Transformed Maximum Likelihood Estimation of Short Dynamic Panel Data Models with Interactive Effects∗
نویسندگان
چکیده
This paper proposes the transformed maximum likelihood estimator for short dynamic panel data models with interactive fixed effects, and provides an extension of Hsiao et al. (2002) that allows for a multifactor error structure. This is an important extension since it retains the advantages of the transformed likelihood approach, whilst at the same time allows for observed factors (fixed or random). Small sample results obtained from Monte Carlo simulations show that the transformed ML estimator performs well in finite samples and outperforms the GMM estimators proposed in the literature in almost all cases considered. JEL Classifications: C12, C13, C23
منابع مشابه
Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملRobust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models∗
This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are crosssectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that arises, and its implications for estimation and inference. We approach the problem by working with a mis...
متن کاملQuasi-Maximum Likelihood Estimation for Spatial Panel Data Regressions
This article considers quasi-maximum likelihood estimations (QMLE) for two spatial panel data regression models: mixed effects model with spatial errors and transformed mixed effects model (where response and covariates are transformed) with spatial errors. One aim of transformation is to normalize the data, thus the transformed models are more robust with respect to the normality assumption co...
متن کاملRobust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models with Cross-Sectional Heteroskedasticity
This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are cross-sectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem and its implications for estimation and inference. We approach the problem by working with a mis-speci ed ho...
متن کامل